
Apache Iceberg 
Merge-on-Read
Streaming CDC
Victoria Bukta (Staff Data Eng)

Crunch Budapest October 2022



AGENDA

Lakehouse Team’s Mission

Legacy System

Our Design

Result

Reflection

1

2

3

4

5

2



Lakehouse Team’s Mission

“Provide Shopify developers with an interoperable, 

performant, and standards-based data lakehouse 

where 1st- and 3rd-party Shopify data can be ingested”

3



Table Snapshot

The state of a datasource at a specific moment in 

time.

● One row per a primary key

● Latest version of a primary key

4



Batch data ingestion 

via statement based replication

Legacy System

5



Legacy System

SELECT * FROM my_table

“statement based replication”
➔ Query DB for data

◆ Does not scale as tables get larger

◆ Long running queries (volatile)

66



Legacy System

SELECT * FROM my_table

WHERE updated_at > 2020/10/01 09:00:00 

➔ Query DB for data

◆ Does not scale as tables get larger

◆ Long running queries (volatile)

➔ Done incrementally by keeping position

➔ Depends on app devs updating updated_at

◆ Possible to miss updates

“statement based replication”

77



Legacy System

➔ Query DB for data

◆ Does not scale as tables get larger

◆ Long running queries (volatile)

➔ Done incrementally by keeping position

➔ Depends on app devs updating updated_at

◆ Possible to miss updates

➔ Smaller queries using bucketing

◆ Increased network requests increase 

time 

➔ Can’t capture deletes

SELECT * FROM my_table

WHERE updated_at > 2020/10/01 09:00:00

AND primary_key >= last_seen_key

ORDER BY primary_key

LIMIT 10,000 

“statement based replication”

88



Legacy System

➔ Spark process to apply update (⏳💰)

◆ Due to columnar file format

◆ Optimizing for aggregation analytics over a 

subset of columns

◆ Efficient compaction (schematized data)

◆ Columnar files are immutable (overwrite)

● Rewrite is an expensive operation

“statement based replication” contd.

99



❏ Scalable ingestion

❏ Scalable snapshot production

❏ More accurate updates

❏ Delete capture

❏ Snapshot SLO of under an hour

Design Goals

10



Streaming data ingestion of change data 

capture via Kafka written in Iceberg V2 storage 

format

Design

11



Design : Kafka ingestion + CDC

● Capturing changes from our source

○ Binlog from MySQL captures every 

transaction

○ Every CREATE, UPDATE, DELETE

■ Requires performing an upsert

○ Ordered based on when the event 

happened

○ Binlog is also used for DB replication

● State changes are emitted to Kafka for future 

ingestion

1212



Design : Kafka ingestion + CDC

● Consume the CDC events from Kafka

● Buffer events into Parquet files

○ Registered in an Iceberg Table

● Achievements

○ Scalability w/ Kafka partitions + 

multiple consumers / writers

○ More accurate updates

○ Delete capture

○ ~7 min SLO data ingest

1313



❏ Scalable ingestion

❏ Scalable snapshot production

❏ More accurate updates

❏ Delete capture

❏ Snapshot SLO of under an hour

1414

Goals



● Iceberg is a table format

● Just a library

● Contents of a table are identified by 

traversing through metadata files

File system Hard Drive

Iceberg
Object Storage

Design : Iceberg

1515



● Iceberg is a table format

● Just a library

● Contents of a table are identified by 

traversing through metadata files

Design : Iceberg

1616



Design : Iceberg

● Iceberg is metadata rich table format 

on top of parquet files

● Enables more efficient file pruning

○ More scalable reads

○ More scalable writes

efficient read & writes 

→
 scalable snapshot production & 1h< SLO

1717



Design : Iceberg

1818



Design : Iceberg

1919



Kafka Injection
 + 

CDC
 + 

Merge-on-Read Iceberg
(aka Iceberg V2 storage) 

Design

20

Design



Iceberg Catalog

Table_snapshot

Base Snapshot

Equality Delete (append 1)

Delta File (append 2)

Positional Delete (append 
3)

● V2 Spec introduces delete files

○ Positional Delete

○ Equality Delete

● Act as filters at query time

● Procrastinate rewriting files

● Targeted rewrite (via Iceberg metadata)

○ Reduced compute

Design : Iceberg V2 storage

2121



Design : Iceberg V2 storage

● Procrastinate rewriting files

● Targeted rewrite (via Iceberg 

metadata)

○ Reduced compute

Targeted upsertes

→
 scalable snapshot production & 1h< SLO

2222



Design : Iceberg V2 storage – Our Goal

Base Table

id: 25 value: a op: C

id: 30 value: alpha op: U

Data File (file_1.parquet)

id: 25 value: b op: U

id: 45 value: c op: C

id: 45 value: d op: U

Desired Result

id: 25 value: b op: U

id: 30 value: alpha op: U

id: 45 value: d op: U

23

23



Design : Iceberg V2 storage – Our Goal

Base Table

id: 25 value: a op: C

id: 30 value: alpha op: U

Data File (file_1.parquet)

id: 25 value: b op: U

id: 45 value: c op: C

id: 45 value: d op: U

Desired Result

id: 25 value: b op: U

id: 30 value: alpha op: U

id: 45 value: d op: U

24

24



Design : Iceberg V2 storage – Step 1: Append Equality Delete

Base Table

id: 25 value: a op: C

id: 30 value: alpha op: U Result

id: 30 value: alpha op: U

Append - Equality Delete File

id: 25

id: 45

25

25



Design : Iceberg V2 storage – Step 1: Append Equality Delete

Base Table

id: 25 value: a op: C

id: 30 value: alpha op: U

Append - Equality Delete File

id: 25

id: 45

Result

id: 30 value: alpha op: U

❖ Row gets filtered out at query 
time

26

26



Design : Iceberg V2 storage – Step 2: Append Data File

Previous Result

id: 30 value: alpha op: U

Append - Data File (file_1.parquet)

id: 25 value: a op: U

id: 45 value: c op: C

id: 45 value: d op: U
❖ Duplicates within the datafile 

remain

Append - Data File (file_1.parquet)

id: 25 value: a op: U

id: 45 value: c op: C

id: 45 value: d op: U

Previous Result

id: 30 value: alpha op: U

27

27



Design : Iceberg V2 storage – Step 3: Append Positional Delete

Append - Positional Delete

file: file_1.parquet pos: 2

Append - Data File (file_1.parquet)

id: 25 value: a op: U

id: 45 value: c op: C

id: 45 value: d op: U

Previous Result

id: 30 value: alpha op: U

2828

Desired Result

id: 25 value: b op: U

id: 30 value: alpha op: U

id: 45 value: d op: U



Design : Iceberg V2 storage – Step 3: Append Positional Delete

Append - Data File (file_1.parquet)

id: 25 value: a op: U

id: 45 value: c op: C

id: 45 value: d op: U

Previous Result

id: 30 value: alpha op: U

Append - Positional Delete

file: file_1.parquet pos: 2

Desired Result

id: 25 value: b op: U

id: 30 value: alpha op: U

id: 45 value: d op: U

❖ Duplicates within the datafile 
are filtered out

29

29



Design : Iceberg V2 storage – Additional Notes

● Delete files effects performance

○ Positional Deletes → fast

○ Equality Deletes → slow

● Lots of small files

● Regular maintenance required to 

optimize the table

○ Rewrite data + delete files

Iceberg Catalog

Table_snapshot

Base Snapshot

Equality Delete (append 1)

Delta File (append 2)

Positional Delete (append 
3)

3030



Results

31

< 7min 3-40 min
Ingestion Time Snapshot Compaction Time



<7min 3-40 min
Ingestion Time Snapshot Compaction Time

● Lots more levers (weigh cost vs performance)

○ Parallel partition rewrites

○ Max file group size (limit the input data to rewrite)

○ Machine size

3232

Results



❏ Scalable ingestion

❏ Scalable snapshot production

❏ More accurate updates

❏ Delete capture

❏ Snapshot SLO of under an hour

Goals

33



● Two ingestion modes

○ Initial full state dump

○ Steady state continuous ingestion

● Two categories of tables

○ Fast to query the uncompacted

○ Slow to query the uncompacted

● Performance cost of keeping delete 

files around

● Aggressive rewriting 

3434

Reflection



Reflection

● Very happy with compaction times + performance

○ Having more levers is important

● Fast vs Slow uncompacted tables

○ Different tiers of tables

○ Hiding uncompacted tables behind a view or tag

● Iceberg’s abstraction hides how data is represented 

on disk, which makes this possible

● Increased complexity of moving to streaming

3535



Thank You!

36


