
Scaling Your Data Lake w/ Iceberg

• Victoria Bukta (Shopify)

● Based in Toronto

● Senior Data Platform Eng

● At Shopify for 4.5 years

○ Toronto & Berlin offices

● Lakehouse (formally Data Acquisition)

● Hobbies

○ Field Hockey

○ Sailing

○ Backcountry Camping

Victoria Bukta

Agenda

● Context

● Problem

● Solution

○ What is Apache Iceberg?

○ Promise (V2 Spec)

● Result

● Reflection

● Future Challenges

● New Kafka ingestion tooling is being built to support
CDC (change data capture) use case (Pepto)

○ Streaming ingestion

○ 15 min SLA

○ Anticipated huge table, trillions of rows

○ Columnar schematized datasets

○ Time series data

○ Aggressive schema evolutions

○ Future use case of supporting Type-1 tables

■ new data overwrites the existing data

● Kafka Connect application because of internal support /
expertise at scale

● Require read support from Spark, Trino, Flink

Context
CDC
Topic

Kafka Connect
(Pepto)

Problem

1. Transactional Semantics

2. Fast upsert to support Type-1 tables

Problem - Transactional Semantics

● Modeling tools currently tied to our writing
implementation

○ HDFS vs Object Store (NOT THE SAME)

■ FS abstraction is missing

● Atomic move, rename

○ Timestamp folders on GCS

■ Makes it hard to do maintenance

tasks without effecting customers

■ Data scientists refer to datasets by

folder location

● Difficult to innovate when implementation

details are exposed

Problem - Transactional Semantics

● Modeling tools currently tied to our writing
implementation

○ HDFS vs Object Store (NOT THE SAME)

■ FS abstraction is missing

● Atomic move, rename

○ Timestamp folders on GCS

■ Makes it hard to do maintenance

tasks without effecting customers

■ Data scientists refer to datasets by

folder location

● Difficult to innovate when implementation

details are exposed

Problem - Fast upsert

● Storing data in columnar format

○ Efficient compaction of schematized data

○ Optimizing for aggregation analytics over

a subset of columns

● Creating Type-1 dimensions is hard

○ Columnar files are immutable

○ Rewrite is an expensive operation

○ People want their data NOW

Solution

V2 Spec

● Iceberg is a table format

○ Just a library

○ Contents of a table are identified by traversing through

metadata files

Solution - What is Apache Iceberg?

File system Hard Drive

Iceberg Object Storage

Solution - What is Apache Iceberg?

● Catalog stores a pointer to a metadata file

○ This files acts as a ledger

○ Has schema information

○ Has partition information

○ Gives us atomic commits

gs://my_bucket/hive-warehouse/table/metadata/00001.metadata.json

gs://my_bucket/hive-warehouse/table/metadata/00000.metadata.json

Solution - What is Apache Iceberg?

"gs://my_bucket/hive-warehouse/table/metadata/snap-00001.avro"

"gs://my_bucket/hive-warehouse/table/metadata/snap-00001.avro"

Solution - What is Apache Iceberg?

Solution - What is Apache Iceberg?

Solution - Promise

● Merge-on-Read

○ V2 Spec introduces delete files

■ Positional Delete

■ Equality delete

○ Applied as filters at query time to

resolve changes

■ Gets applied to the resultset of

your executed query. No full table

scan needed!

● Erik Wright from Shopify helped write the

proposal for Iceberg merge-on-read

Iceberg Catalog

Table_snapshot

Base Snapshot

Equality Delete (append 1)

Delta File (append 2)

Positional Delete (append
3)

V2

Result

Result - Zoom Out

Result - Storage

● Bucket per Region + Sensitivity
○ For us this ended up being a bucket per a

catalog
○ Pushback against additional infra related

work for managing + spinning up +
configuring buckets on the fly
■ Currently buckets are managed by

Terraform
○ Future access restricts could be applied

via GCS prefix IAM restrictions
● Catalogs group datasets with the same

behaviour
○ CDC vs events vs raw_type_1 etc.

● Small data + metadata file problem because of

micro-batch processing (streaming)

○ Datafile and manifest compaction solves the small file

problem for us

● Versioning our datasets by keeping deltas

around

● Privacy

○ PII is purged after 30 days in GCS

○ Inflight enforcement of data

○ Re-enforcement

● GCS cleanup

○ From retention or snapshot expiry, files that are no

longer registered to the table are deleted from GCS

Result - Maintenance

Reflection
● I wish we did a bucket per a dataset

○ A very fine grain of separation

○ Easier to implement specific restrictions / functionality

■ Regulated industry (ex SOX)

○ More upfront work but would have accommodated additional use cases

● Writing your own engine to utilize Iceberg can be hard (Kafka connect is not supported)

○ We ended up building our own version of many of the concepts that you see in the

Flink Iceberg Connector (async committing to)

○ Flink connector did not fully exist when we started

○ Documentation is not great leading to a divergence between the online docs and

their Java API

Future Challenges
V2

Pepto Ijsbreker Writer

Delta File
Buffer

Positional
Delete File
Buffer

Equality
Delete File
Buffer

Mapping
Id → (File,
Pos)

Record

2

1

3

4

Iceberg Catalog

Table_snapshot

Base Snapshot

Equality Delete

Delta File

Positional
Delete

5.1

5.2

5.3

Dataset GCS Bucket
5

Thank you!

